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EFL DebugD

● New in EFL 1.16
● Not finalized and stable

– Looking for input, usage, maturing of protocol

● User-level
– No Root or kernel features needed
– If run, ALL EFL apps connect to EFL DebugD by default

● If connection fails, debugging not enabled

● Uses simple UNIX Sockets
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Every EFL App Connects

● eina_init() will:
– Connect to EFL DebugD

● If connect succeeds  app has debug controls→
● If connect fails  app has no debug controls→
● If connnection drops  app stops having debug controls→

● efl_debug cmdline tool can:
– list  list PIDs of debuggable clients→
– evlogon PID  start logging events from process PID→

● A file ~/efl_debug_evlog-PID.log will be have all events appended to

– evlogoff PID  stop logging events from process PID→
● Log file will be closed



Eina Evlog

● Allows you to instrument events and timelines
– Single events like “vsync event” or “interrupts”
– States beginning and ending (begin animating, end animating)
– Call ranges (begin doing x, end doing x)

eina_evlog("!EVENT", NULL, 0.0, NULL);

eina_evlog("+do_x", NULL, 0.0, NULL);

eina_evlog("-do_x", NULL, 0.0, NULL);

eina_evlog(">state_y", NULL, 0.0, NULL);

eina_evlog("<state_y", NULL, 0.0, NULL);



Evlog Visualized
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Evlog Visualized
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Surprise!

● We spend very little time rendering even in SW!
● Time spent manipulating objects in animator is huge!
● Rendering preparation is very heavy vs. rendering!

● Eina DebugD + Evlog is very useful
● Evlog can be used by apps too to trace their own code
● We need to add more and more Evlog probes in EFL to get more info

– Help us do this if you write or debug any code in EFL!



A Fix Evlog found

Rendering doesn't start until all objects have
been walked and commands generated

Rendering now begins
WHILE walking objects

de33ab24c5e89cec5e7928a8180302ca299fdc58



Evlog Improvements to do

● Expand EFL DebugD client protocol to get Evlog streams directly
● Have Evlog Util talk directly to EFL DebugD
● Have Evlog Util allow selection otarget & turn on/off on the fly
● Add more Evlog probes everywhere
● Add more info like CPU usage per thread logs (and which CORE, frequency 

of the core ...)

https://git.enlightenment.org/devs/raster/evlog.git



EFL DebugD Improvements

● Protocol will expand/be improved
● Become extensible

– Clouseau
– Allow inspection of all eo objects at runtime
– Improve existign backtrace infra

● Can get a bt from every thread right now in tight polling
● Not reported via EFL DebugD at the moment

● Find ways to make remote systems debuggable
– Connect to a remote EFL DebugD



EFL DebugD Improvements

● Make far more complete Debugging UI and debug tools
– Get more low level debug info like complete memory usage

● Use malloc hooks, mmap wrappers etc.

– Get rendering cost info (GL or SW etc.)
– Get higher level memory usage

● Images, fonts, etc. etc.

– Get higher level data content
● Images, fonts, etc. etc.



Current work underway

● Move Clouseau to DebugD
– Add Clouseau support in DebugD protocol

● Means making protocol extensible



Demo



QnA
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