
New EFL Debugging Probes

EFL Korea Community Seminar 2015
Seoul Conrad Hotel

2015-10-28

Carsten Haitzler <c.haitzler@samsung.com> <raster@rasterman.com>

Master Engineer Samsung Electronics, Korea
Enlightenment / EFL Founder

mailto:c.haitzler@samsung.com
mailto:raster@rasterman.com

EFL DebugD

● New in EFL 1.16
● Not finalized and stable

– Looking for input, usage, maturing of protocol

● User-level
– No Root or kernel features needed
– If run, ALL EFL apps connect to EFL DebugD by default

● If connection fails, debugging not enabled

● Uses simple UNIX Sockets

EFL DebugD

EFL DebugD

App 1 App 2 App 3 Debug Tool

Local
UNIX

SocketSame
User

Every EFL App Connects

● eina_init() will:
– Connect to EFL DebugD

● If connect succeeds app has debug controls→
● If connect fails app has no debug controls→
● If connnection drops app stops having debug controls→

● efl_debug cmdline tool can:
– list list PIDs of debuggable clients→
– evlogon PID start logging events from process PID→

● A file ~/efl_debug_evlog-PID.log will be have all events appended to

– evlogoff PID stop logging events from process PID→
● Log file will be closed

Eina Evlog

● Allows you to instrument events and timelines
– Single events like “vsync event” or “interrupts”
– States beginning and ending (begin animating, end animating)
– Call ranges (begin doing x, end doing x)

eina_evlog("!EVENT", NULL, 0.0, NULL);

eina_evlog("+do_x", NULL, 0.0, NULL);

eina_evlog("-do_x", NULL, 0.0, NULL);

eina_evlog(">state_y", NULL, 0.0, NULL);

eina_evlog("<state_y", NULL, 0.0, NULL);

Evlog Visualized

Evlog Visualized

Evlog Visualized

Evlog Visualized

Frame Wakeup Event

Current State (animator on)

Mainloop Thread

Animator Callback

Event Handling

Preparing Rendering

SW Rendering in Thread

Evas Render Thread

Surprise!

● We spend very little time rendering even in SW!
● Time spent manipulating objects in animator is huge!
● Rendering preparation is very heavy vs. rendering!

● Eina DebugD + Evlog is very useful
● Evlog can be used by apps too to trace their own code
● We need to add more and more Evlog probes in EFL to get more info

– Help us do this if you write or debug any code in EFL!

A Fix Evlog found

Rendering doesn't start until all objects have
been walked and commands generated

Rendering now begins
WHILE walking objects

de33ab24c5e89cec5e7928a8180302ca299fdc58

Evlog Improvements to do

● Expand EFL DebugD client protocol to get Evlog streams directly
● Have Evlog Util talk directly to EFL DebugD
● Have Evlog Util allow selection otarget & turn on/off on the fly
● Add more Evlog probes everywhere
● Add more info like CPU usage per thread logs (and which CORE, frequency

of the core ...)

https://git.enlightenment.org/devs/raster/evlog.git

EFL DebugD Improvements

● Protocol will expand/be improved
● Become extensible

– Clouseau
– Allow inspection of all eo objects at runtime
– Improve existign backtrace infra

● Can get a bt from every thread right now in tight polling
● Not reported via EFL DebugD at the moment

● Find ways to make remote systems debuggable
– Connect to a remote EFL DebugD

EFL DebugD Improvements

● Make far more complete Debugging UI and debug tools
– Get more low level debug info like complete memory usage

● Use malloc hooks, mmap wrappers etc.

– Get rendering cost info (GL or SW etc.)
– Get higher level memory usage

● Images, fonts, etc. etc.

– Get higher level data content
● Images, fonts, etc. etc.

Current work underway

● Move Clouseau to DebugD
– Add Clouseau support in DebugD protocol

● Means making protocol extensible

Demo

QnA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

